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Abstract—Mobile crowd sensing (MCS) is a technique where
sensing tasks are outsourced to a crowd of mobile users. Since
most of sensing tasks are location-dependent, workers are re-
quired to embed their locations into sensing reports, which incurs
location privacy vulnerabilities. Realizing that workers perceive
their location privacy differently, in this work we construct
an auction-based trading market, facilitating location privacy
trading between workers and the platform. Each worker can
decide how much location privacy to disclose to the platform
based on its own location privacy leakage budget ξ. The higher
ξ is, the less secrecy its reported location preserves. As a result, it
receives higher payment from the platform as a compensation to
its privacy loss. Besides, our mechanism enables the platform to
select a suitable set of winning workers to achieve desirable ser-
vice accuracy. For this purpose, a heuristic algorithm is devised,
with polynomial-time complexity and bounded optimality gap.
As formally proved in this manuscript, our proposed mechanism
guarantees a series of nice properties, including ξ-privacy, (α,β)-
accuracy, and budget feasibility.

Index Terms—Location privacy; mobile crowd sensing; privacy
trading

I. INTRODUCTION

A. Motivation

Mobile crowd sensing (MCS) emerges as a promising sens-
ing paradigm that outsources the collection of data to a crowd
of participating users, namely workers, with mobile devices,
which are equipped with a plethora of on-board sensors
(e.g., compass, accelerometer, gyroscope, camera, GPS) to
capture data from surrounding environment. A large variety of
MCS systems have been deployed, including noise mapping,
smart transportation, road surface monitoring, indoor floor
plan reconstruction, healthcare, and many others. Sensing data
in these MCS applications are mostly location dependent. For
example, in noise mapping, the distribution of the urban noise
varies according to different geographic areas; for the case of
realtime traffic maps, the traffic volume is tied to a specific
section of road. Therefore, workers are typically required
to embed sensing locations, i.e., their coordinates, in each
piece of sensing report, which may, however, cause privacy
breach. Thus, protecting location privacy is essential to attract
participating workers in MCS. While there has been some
existing research on this topic [1]–[5], most of them adopt
conventional approaches, such as cloaking and k-anonymity.

On the other hand, individuals may perceive their privacy
differently; Some may impose stringent requirement over
privacy leakage, while some others accept monetary reward

in trade of their personal data. From the coupons offered for
revealing opinions of a product to the large-scale trade of
personal information by data brokers such as Acxiom [6],
the commoditization of private data has been trending up.
Some theoretical research has been devoted on private data
trading. However, most of them, including [7]–[11], focus on
scenarios where there exists an “agent” for individual users
to trade their privacy with data buyers. In another word, the
“agent” is assumed trustworthy and users do not have control
over their own data. In this concern, Wang et al. [12], [13]
proposed to take over privacy control from “agents” and return
it to individual users. In their design, users make independent
decisions on how much privacy to disclose to data buyers
through adding different amount of noise to their original data.
Clearly, this approach would inevitably impact the accuracy of
the data aggregation results. Yet, they fail to provide a precise
measurement on such an accuracy degradation. Besides, data
buyers cannot freely choose what accuracy level of data to
purchase. All these limitations render their contributions of
less practical use.

B. Design Rationality
Inspired by [12], [13], in this paper we develop a trading

market for MCS. Not only does it help the platform to
recruit workers, as what traditional MCS markets do, but also
facilitates workers to sell location privacy. More importantly,
the platform can decide which subset of workers to pick,
depending on how noisy their reported locations are, so as
to provide accuracy guaranteed MCS services. Nonetheless,
this is not an easy task.

First and foremost, in order to facilitate the trading, it
is important to quantify location privacy. In this regard, the
commoditization of location privacy has dovetailed nicely with
the development of the theoretical underpinnings of it: recent
work on geo-indistinguishability [14] provides a compelling
definition and a precise way to quantify its sale. Owing to
different perception on location privacy, each worker has its
own location privacy leakage budget ξ. The larger ξ is, the
loose requirement a worker has. In another word, this worker
is more willing to sell its location privacy.

In order to stimulate workers to participate in task sensing,
the platform has to compensate them for their sensing cost
and privacy loss. However, in practice, the platform is usually
limited with its monetary budget. Such a constraint can sig-
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nificantly impact trading outcomes. For example, even there
are sufficient workers willing to sell their location privacy,
the platform may be short of budget to afford such cost.
Therefore, budget feasibility needs be taken into account in
the mechanism design.

To enable the platform to quantify service accuracy so
as to pick suitable worker set, a novel location obfuscation
mechanism is devised. Each worker chooses its obfuscated
location to report in a probabilistic manner. We further define
(α,β)-accuracy, Pr[loss ≤ α] ≥ β, where loss is the service
degradation caused by workers’ location manipulation and
β is a confidence level. The introduction of (α,β)-accuracy
bridges worker location privacy and MCS service accuracy.

C. Related Work

Protecting location privacy in MCS has attracted increasing
attention. According to a recent survey on the MCS privacy
issues [15], cloaking is one of the most widely used strate-
gies in practice, e.g., [1]–[3]. Besides, k-anonymity [16] and
location obfuscation [4], [5] have also been investigated in
this domain. These works treat location privacy from different
workers equally. In fact, individuals may perceive different
values towards their privacy. Thus, in this work we endeavor to
provide workers with more flexibility in selling their location
information and determining their privacy level.

Data privacy has also been studied in the context of MCS,
e.g., [17]–[19]. Their main idea is to protect worker’s re-
ported data from the platform during data aggregation, since
individual data can potentially disclose sensitive information
regarding their reporters. Techniques, such as cryptographic
multi-party computation, data perturbation and anonymization
have been employed. Recently, Jin et al. [20] incorporated
workers’ privacy cost into the incentive mechanism. Note that
its objective is to prevent outsiders from identifying individual
data, where the platform is assumed trustworthy. Instead, like
[21], in this work we aim to protect worker’s privacy from
the platform. While [21] allows workers to add noise to their
original data and get paid accordingly, users cannot customize
how much noise to add; the noise distribution is determined
by the platform.

Treating user privacy as commodities, Ghosh and Roth
[7] are among the first to lay a theoretical foundation for
selling private data. [8]–[11] also fall into this line of research.
However, these works assume the existence of a trustworthy
“agent” to sell user’s data. Very recent works [12], [13]
propose private data trading that users take full control of their
own data. Nonetheless, they adopt game-theoretic models,
which, however, may end up with an inefficient equilibrium;
the accuracy of data aggregation is not guaranteed.

The rest of this paper is organized as follows. In Section
II, we give a system overview. Design objectives of this
work are described in Section III. Details of our mechanism
design are discussed in Section IV. The analysis over the
properties achieved in MCS markets are conducted in Section

V. Extensive simulation results are provided in Section VI.
Finally, we conclude the paper in Section VII.

II. SYSTEM OVERVIEW

A. MCS Systems
We consider a general MCS system consisting of a plat-

form and set of participating workers, denoted as W =
{w1, · · · , wj , · · · , wM}. The platform publishes a set of sens-
ing tasks T = {τ1, · · · , τi, · · · , τN}. Since sensing tasks are
generally location dependent, workers are required to indicate
their sensing location in each sensing report. However, it
allows the platform to track workers and is thus privacy
compromising. To protect worker’s location privacy from the
platform, in our mechanism a worker wj is allowed to report
an obfuscated location zj other than its genuine one lj .
Since workers value their location privacy differently, each
of them independently chooses its own privacy budget ξj ,
which indicates the maximum privacy wj is willing to disclose.
Generally, the lower ξj is, the more stringent requirement
wj imposes over its location privacy. As a result, less useful
location information zj leaks to the platform that assists the
inference of lj . Since obfuscated locations affect the accuracy
of data aggregation, the platform needs to decide which subset
of workers to select for task sensing so as to provide accuracy-
guaranteed MCS services. The framework of our auction based
MCS market is summarized as follows.

• The platform announces a set of sensing tasks T to
workers.

• Then, each worker wj ∈ W submits its interested sensing
tasks Tj and bid bj to the platform, where the bid reflects
wj’s valuation of privacy loss and sensing costs (see
Section II-D). Following certain criterion (see Section
IV-A), the platform determines a winner set W∗, i.e., the
workers to fulfill sensing tasks, and their payments p.

• Each winning worker wj ∈ W∗ then conducts sensing
tasks Tj , prepares its sensing reports with obfuscated
location zj , and forwards them to the platform.

• Finally, the platform aggregates over collected sensing
reports, derives sensing results, and publishes them to
the community or sends back to task requestors.

B. Geo-information Quality Model
To hide the exact location lj from the platform, each

worker wj ∈ W adopts a location obfuscation mechanism
(see Section IV-B) to convert lj into an obfuscated location
zj . Then, instead of lj , worker wj reports zj together with
its sensing data. As a result, its sensing report will inevitably
experience accuracy degradation, so does the final aggregation
result derived at the platform. Because this information loss
is caused by worker’s location manipulation, we refer it as
geo-information loss, which is defined by

loss =
∑

j:wj∈W∗

d(lj , zj) (1)

where d(lj , zj) represents wj’s drift distance. Geo-information
loss is calculated as a sum over all winning workers’ drift
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distances. A larger value of loss implies that more “noises” are
added to workers’ reported locations, which results in poorer
service accuracy MCS provides. If all winning workers embed
their true locations in sensing reports, their reports correctly
record what they sense, and thus loss = 0.

C. Adversary Model

The Bayesian attack is the de-facto standard adversary
model adopted to measure location privacy since Andrés et
al.’s work geo-indistinguishability [14]. The adversary, i.e., the
platform in this work, is assumed to have side information
about a worker’s location, knowing, for example, which city
it is at. The adversary’s side information can be modeled by
a prior distribution on Lj , the entire set of wj’s possible
locations. Pr[lj ] (lj ∈ Lj) is the probability associated
with location lj . Pr[zj |lj ] is the probability that the reported
location zj is converted from lj , which is assumed to known
by the platform as well. Upon observing zj , the adversary
can build a posterior distribution over the inputs, denoted as
Pr[lj |zj ]

Pr[lj |zj ] =
Pr[zj |lj ] Pr[lj ]∑

l′j∈Lj
Pr[zj |l′j ] Pr[l′j ]

∀lj ∈ Lj . (2)

Then the platform derives its best guess over wj’s location
by looking for the one that produces the largest posterior
probability l∗j = argmaxlj∈Lj Pr[lj |zj ]. Besides, the platform
is assumed working under semi-honest mode, i.e., it is trusted
to correctly execute protocols of MCS systems but is curious
about worker’s locations.

D. Auction Model

To motivate workers to participate in MCS, effective incen-
tive mechanisms are indispensable. In this work, we implement
the incentive mechanism via a combinational reverse auction.
Given a set of sensing tasks announced by the platform, each
worker selects a bundle of tasks it is interested in and derives
a bid, i.e., the minimum payment it accepts for executing these
tasks to compensate its cost.

Denote by cj as wj’s total cost for sensing tasks in one
auction. cj = csj+cpj ξj is composed of two parts, wj’s cost for
resource consumption, namely sensing cost which is denoted
as csj , and cost for privacy leakage, namely privacy cost which
is denoted as cpj ξj . The integration of these two makes sure that
workers are compensated from both aspects. For any worker
wj , its privacy cost cpj ξj is positively correlated with its privacy
leakage budget ξj . Intuitively, the larger privacy disclosed to
the platform, the higher it costs to the worker. Therefore, we
adopt the natural linear model for privacy cost as in [20] where
cpj denotes the worker’s unit cost of privacy.

We assume that each worker is strategic and aims to
maximize its own utility, which is defined as uj = pj − cj ,
where pj and cj stand for its payment and cost, respectively.
Apparently, if a worker is not selected by the platform, its
utility is 0.

III. DESIGN OBJECTIVES

In this work, we aim to establish a comprehensive MCS
market that exhibits the following desirable properties.

First of all, workers are allowed to choose how much
location privacy to disclose to the platform. Following the
location privacy modeling in geo-indistinguishability [14], we
define ξj-privacy.

Definition 1. ξj-Privacy. A worker wj achieves ξj-privacy,
if the platform A, who adopts Bayesian attack model, has
exp(ξj) advantage in inferring wi’s actual location distribu-
tion. A’s advantage is defined as

AAdv[lj ] =
Pr[lj |zj ]
Pr[lj ]

≤ exp(ξj) ∀ lj ∈ Lj (3)

Following [14], ξj is specified by a tuple (ϵj , rj), ξj =
ϵj/rj . rj is the radius worker wj is mostly concerned with
and ϵj is the privacy level it wishes for that radius. The main
idea behind this notion is that, for any radius rj , wj enjoys
ϵj-privacy within rj , i.e., the level of privacy is proportional
to the radius. Thus, ξj corresponds to the privacy level for one
unit of distance.

The platform’s advantage is in fact its posterior knowledge
gain. The goal of privacy protection here is to restrict the
information leakage caused by the observation. When wj sets
ξj as 0, the platform gains no advantage in inferring wj’s
actual location based on the observation over zj . Note that
the lack of leakage does not mean that the worker’s location
cannot be inferred (it could be inferred by the prior alone), but
the observation would not increase the adversary’s knowledge.
More importantly, the platform’s posterior knowledge gain is
controlled by wj through tuning ξj . By selecting a proper ξj ,
wi determines how much advantage the platform can gain.
As the second objective, we aim to achieve a measurable

MCS service accuracy at the platform. To protect location pri-
vacy from the platform, workers embed obfuscated locations
in their reports, and thus inevitably cause geo-information
loss. Besides, as each worker chooses its obfuscated location
in a probabilistic manner (see Section IV-B), loss is in
fact a random variable, which brings a great challenge in
service accuracy measurement. Instead, we propose to adopt
a probabilistic evaluation form.

Definition 2. (α, β)-Accuracy. The platform provides (α, β)-
accurate MCS services, if Pr[loss ≤ α] ≥ β, where α > 0
and β ∈ (0, 1).

Generally, for a given β, a smaller α indicates a better
service accuracy. β can be treated as a confidence level for
the statement Pr[loss ≤ α].
Most of commercialized crowdsensing platforms are typi-

cally constrained by a monetary budget B, i.e., the maximum
total payment it can afford to reward winning workers in one
auction. Thus, it is more practical to take it into account during
mechanism design.

Definition 3. Budget Feasibility. The platform is budget
feasible, if

∑
j:wj∈W∗ pj ≤ B.
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In addition to the above three objectives, we also need
to guarantee the following two economic properties that are
indispensable for a robust auction-based market.

Definition 4. Truthfulness. An MCS market is truthful if for
any worker wj , uj(cj , b−j) ≥ uj(bj , b−j) where bj is wj’s
submitted bid with bj ̸= cj and b−j is the bidding profile from
other workers except wj .

Definition 5. Individual Rationality. An MCS market is
individual rational if each worker wj has a nonnegative utility
uj ≥ 0.

IV. MECHANISM DESIGN

A. Problem Formulation
Based on the design objectives discussed in the previous

section, we formulate them into the following geo-information
loss minimization problem (GLMP)

min : α

s.t.
∑

j:wj∈W
xjpj ≤ B (4)

⋃

j:wj∈W,xj=1

Tj ⊇ T (5)

Pr[loss ≤ α] ≥ β (6)
xj ∈ {0, 1}, pj ≥ 0, α > 0

Given a fixed confidence level β, the platform aims to
minimize the geo-information loss of MCS services, while
satisfying a series of constraints. Specifically, (4) is due to the
budget feasibility requirement. (5) states that the platform’s
sensing task set should be fully covered. (6) is the (α, β)-
accuracy requirement. xj is a binary variable. It is equal to
1, if wj is selected as the winner for sensing tasks; and 0
otherwise. The variable pj decides the payment to wj . In
addition to constraint (4)-(6), any solution to GLMP should
also satisfy some other inherent constraints, including ξj-
privacy, truthfulness and individual rationality. Due the lack
of explicit expressions, we temporarily omit them from the
formulation of GLMP.
B. Location Obfuscation Mechanism Design

Solving GLMP is largely hindered by constraint (6), because
the variable α is within a probabilistic expression. As far as we
know, there is no existing efficient algorithm to directly solve
optimization problems in such a form. It drives us to explore
other relations among α, β and loss in (6), so as to convert it
into a form that is easier to handle. As the calculation of loss
depends on the location obfuscation mechanism adopted by
each worker. In the following, we first introduce our proposed
obfuscation mechanism and then provide the corresponding
alternative expression for (6).

The mechanism is composed of two procedures, obfuscated
location set generation and probabilistic mapping.

Obfuscated Location Set Generation. For each worker
wj , consider a system of polar coordinates with origin at its
true location lj . wj determines the unit ∆rj and ∆θj and

evenly divides rj into [0,∆rj , 2∆rj , · · · , rj ], and 2π into
[∆θj , 2∆θj , · · · , 2π]. Note that rj is the radius that wj is
most concerned with. Let it be wj’s maximum obfuscation
range. Then its obfuscated location set is generated by Zj ={
zj = (m ·∆rj , n ·∆θj) : m ∈ [1, rj

∆rj
], n ∈ [1, 2π

∆θj
]
}
, where

(m · ∆rj , n · ∆θj) is the polar coordinate of an obfuscated
location zj , with m · ∆rj and n · ∆θj its radius and angle,
respectively.

Probabilistic Mapping. Once Zj is ready, wj needs to
select among them an element and report it as its location.
Our design is motivated by the exponential mechanism [22],
[23]: for any zj ∈ Zj , its probability of being selected is
determined by

Pr[zj |lj ] =
exp[ ξjrj (rj − d(lj , zj))]

∑
z′
j∈Zj

exp[ ξjrj (rj − d(lj , z′j))]
. (7)

Apparently, the location zj with a shorter drift distance
d(lj , zj) has a higher chance to be chosen. But this advantage
diminishes as ξj decreases. Particularly, when ξj = 0, i.e., wj

has zero privacy leakage budget and thus imposes the most
strict privacy requirement, all elements in Zj have the equal
chance to be chosen.

Theorem 1. With the proposed location obfuscation mech-
anism, the platform provides (α,β)-accurate MCS services.
Given β, then

α =

√∑
j:wj∈W∗ σ2

j

(1− β)
+

∑

j:wj∈W∗

µj (8)

where µj and σ2
j represent the mean and variance of wj’s

drift distance.

Proof. Please refer to Appendix A for the proof.

C. GLMP Reformulation
Theorem 1 specifies the relation between α and β under the

proposed location obfuscation mechanism.
Accordingly, GLMP can be reformulated as

min :

√∑
j:wj∈W xjσ2

j

(1− β)
+

∑

j:wj∈W
xjµj (9)

s.t. (4), (5) xj ∈ {0, 1}, pj ≥ 0

which is referred as the reformulated GLMP for the rest of this
paper. Like GLMP, any solution to the reformulated GLMP
should also satisfy inherent constraints, including ξj-privacy,
truthfulness and individual rationality.

Comparing GLMP and its reformulated version, the coeffi-
cient σj/

√
1− β+µj can be viewed as wj’s geo-information

loss caused to MCS services. While the reformulated GLMP
gets rid of the troublesome probabilistic constraint (6), it is
still at least NP-hard.

Theorem 2. The reformulated GLMP is at least NP-hard.

Essentially, the reformulated GLMP can be degenerated into
a conventional weighted set cover problem, which has been
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proved as NP-hard [26]. Thus, the reformulated GLMP is at
least NP-hard. Due to the limited space, we omit its formal
proof here.

D. Heuristic Algorithm Design
Since the reformulated GLMP is at least NP-hard, it is

computationally inefficient to optimally solve it. Instead, we
propose a heuristic algorithm to derive a solution to x and p.
It is worth noting that the elimination of the probabilistic con-
straint (6) facilitates the design for such a heuristic algorithm,
while this is much more complicated by working on GLMP
directly.

Our heuristic algorithm is composed of two procedures, win-
ner selection and payment determination. The first procedure
determines the winning worker set, i.e., x, while the second
one calculates payment for each winner, i.e., p.

Algorithm 1 Winner Selection
Input: T , W , β, µ, σ
Output: x
1: W ′ ← {wj ∈ W : bj

|Tj | ≤
B
|T |}, W0 ← ∅, s ← 1, x ← 0,

p ← 0
2: k ← argmaxj:wj∈W′\W0

gj|W0
bj

, W1 ← wk

3: while T ̸= ∅ and bk ≤ B
2 ×

gk|Ws−1

S(Ws)
do

4: xk ← 1
5: Ws ← Ws ∪ wk, W∗ ← Ws, T ← T \ Tk
6: s ← s+ 1
7: k ← argmaxj:wj∈W′\Ws−1

gj|Ws−1

bj
8: end while
9: Return x

Winner Selection. As shown in Algorithm 1, once receiving
bid profiles from all workers, the platform first creates a set
W ′ by ruling out any worker whose per-task bid bj/|Tj |
exceeds the platform’s per-task budget B/|T |. Recall from the
reformulated GLMP that the platform tends to select workers
who execute more tasks and provide high-quality sensing
reports, i.e., introduce small drift distances. Thus, we define a
parameter called marginal contribution

gj|Wj−1
=

1

Fj
[G(Wj−1 ∪ wj)−G(Wj−1)]. (10)

Wj−1 denotes the set of winning workers selected in the
(j − 1)-th iteration of the while loop in Algorithm 1.
G(Wj−1) = |∪wj∈Wj−1Tj | is the number of tasks executed by
workers in Wj−1. Fj = σj/

√
1− β+µj is obtained from the

reformulated GLMP’s objective function, approximating the
geo-information loss introduced by wj . In each iteration, the
algorithm selects a worker that produces the largest gj|Ws−1

/bj
(line 7). Besides, a winner’s bid should also meet the following
requirement for the budget feasibility

bj ≤
B

2
×

gj|Wj−1

S(Wj)
, (11)

where S(Wj) = S(Wj−1) + gj|Wj−1
and S(W0) = 0. The

iteration continues until all tasks are assigned.

Payment Determination. Once winning workers are se-
lected, the remaining job is to determine their payments. In
order to achieve truthfulness, we follow the idea of critical
payment [24]. A critical payment pj for winner wj is set in
a way that wj wins when bidding lower than pj , and loses
otherwise.

Specifically, for each winning worker wj , the platform
runs Algorithm 1 again based on a different input tuple
{T ,W \ wj ,β} and derives another winner set W∗

. Since
W \ wj excludes wj , so does W∗

. Then for each worker
wl ∈ W∗

, which is selected in the l-th iteration in Algorithm
1, the platform finds the highest virtual bid bvj,l such that wj

can substitute wl to win (in the l-th iteration), if it bids with
bvj,l. It implies that gl|Wl−1

/bl ≤ gj|Wl−1
/bvj,l. Together with

the winner selection criteria from Algorithm 1, this virtual bid
should satisfy

bvj,l = min

{
bl × gj|Wl−1

gl|Wl−1

,
B

2
×

gj|Wl−1

S(W l)

}
. (12)

Finally, wj’s payment is set as pj = argmaxl∈W∗ bvj,l, i.e.,
the maximum achievable virtual bid from W∗

.
The following theorem shows that our heuristic algorithm is

of polynomial-time complexity. Thus, the reformulated GLMP
can be efficiently solved.

Theorem 3. The computation complexity of our heuristic
algorithm is upper bounded by O(M2N).

The above statement can be easily derived according to
the heuristic algorithm. Due to the limited space, we omit
its formal proof here.

Theorem 4. Denote by OPT the optimal result of the refor-

mulated GLMP, then α
OPT ≤

B·
∑

wj∈W∗
|Tj |
cj

2S(W∗)minj∈[1,M]{Fj} , where α
is the result obtained via the heuristic algorithm.

Proof. Please refer to Appendix B for the proof.

V. PROPERTY ANALYSIS

In this section, we provide theoretical analysis over the
properties achieved by our mechanism, including ξj-privacy,
budget feasibility, truthfulness and individual rationality. Re-
call that (α,β)-accuracy has been proved to exist in Theorem
1.

To show that ξj-privacy is guaranteed for each worker wj ,
we first give the following lemma.

Lemma 1. With wj’s location obfuscation mechanism, then
1

exp(ξj)
≤ Pr[zj |lj ]

Pr[zj |l′j ]
≤ exp(ξj), where lj , l′j ∈ Lj are wj’s two

arbitrary true locations.

Proof. Please refer to Appendix C for the proof.

Lemma 1 says that when wj is at lj and l′j , the ratio
between the chances that both of them are mapped to the same
obfuscated location zj is bounded by [ 1

exp(ξj)
, exp(ξj)]. When

ξj = 0, Pr[zj |lj ] = Pr[zj |l′j ], i.e., lj and l′j have the same
chance to map to zj . In another word, with the observation
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of zj , it’s difficult for the platform to determine whether this
worker locates at lj or l′j . Based on Lemma 1, we are ready
to present the privacy protection property achieved by our
mechanism.

Theorem 5. Each winning worker wj ∈ W∗ achieves ξj-
privacy via our mechanism, i.e., AAdv[lj ] ≤ exp(ξj).

Proof. Please refer to Appendix D for the proof.

Theorem 5 indicates that each winning worker has full
control of its location privacy leakage to the platform. When it
has a harsh privacy requirement, it sets a small ξj . Specifically,
when ξj = 0, the platform’s posterior knowledge gain is
1, i.e., no useful information regarding wj’s true location
is explorable from any observation. Regarding the losing
workers, as they do not upload any sensing report, no location
information will be disclosed.

Recall that the platform’s budget is B. To avoid its deficit in
hosting sensing tasks, our design has to limit winning workers’
total payment. Before discussing if this property holds, we
would like to introduce the following lemma, which gives an
upper bound to each winner’s payment.

Lemma 2. For a winning worker wj ∈ W∗, its payment pj
is upper bounded by B

gj|Wj−1

S(W∗) .

Proof. Please refer to Appendix E for the proof.

With Lemma 2, we can infer
∑

wj∈W∗ pj ≤
∑

wj∈W∗ B
gj|Wj−1

S(W∗) = B, i.e., the total payment to winning
workers is confined to the platform’s budget B. Thus, the
budget feasibility exists.

Theorem 6. The platform is budget feasible.

The critical economic properties, including truthfulness and
individual rationality, are also achieved via the proposed
mechanism.

Theorem 7. The MCS market is truthful.

Proof. Please refer to Appendix F for the proof.

Theorem 8. The MCS market is individual rational.

Proof. Please refer to Appendix G for the proof.

VI. EVALUATION

In this section, we provide numerical results on evaluating
performances of our mechanism. Real-world dataset retrieved
from New York City’s 311 platform [25] is adopted. 311
is America’s highly popular non-emergency report system
allowing people to call in many cities to find information
about services, make complaints, or report problems like noise
pollution or road damage. In simulations, 167355 data entries
from Manhattan area have been extracted. We treat 311 users
as sensing workers in MCS and their complaints as sensing
reports. Besides, since each complaint is associated with a
location coordinate, such information is used to emulate its
reporting worker’s true location. As a note, 311 dataset has
been widely adopted in social/crowd sensing related research.
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Fig. 1. Optimality gap of the heuristic algorithm under different settings.

Our code is written in MATLAB on a laptop with 3.4GHz
Intel i7 CPU and 16 GB memory.

A. Performances of Our Heuristic Algorithm
We first show performances of the proposed heuristic algo-

rithm in terms of its optimality gap and computation efficiency.
For this purpose, we compare it with the optimal solution,
which is obtained by exhaustive search.

Optimality Gap. The impact of task size N and worker
size M are examined in Fig. 1(a) and Fig. 1(b), respectively.
The heuristic algorithm produces a higher α than the optimal
one. For example in Fig. 1(a), when N = 20, α = 73.46 for
the former, while α = 48.75 for the latter. This optimality
gap comes from two aspects. Firstly, the heuristic algorithm
trades a portion of computation accuracy with computation
efficiency, which will be discussed shortly. More importantly,
the exhaustive search does not consider ξj-privacy, truthful-
ness or individual rationality, while these properties have been
formally proved to exist in our design through Theorem 5,
Theorem 7 and Theorem 8.

Computation Efficiency. Table 1 compares the computation
time for both algorithms under different MCS market sizes.
Particularly, under the setting M = 190, N = 100, it only
costs 309.06 ms for the heuristic algorithm to find the solution,
while that for the exhaustive search is significantly larger, i.e.,
4967.41 ms. The latter is about 16 times the former. Besides,
the performance improvement becomes more apparent under a
larger market setting. Therefore, our algorithm is suitable for
MCS, which typically involves a large number of workers.

B. Privacy Protection
To evaluate the performance of privacy protection, we show

the platform’s posterior knowledge gain AAdv[lj ] toward a
worker’s true location lj under the observation of this worker’s
reported location zj . An arbitrary worker wj is randomly
selected from the winning worker set and tested.

Impact of Privacy Leakage Budget ξj . Fig. 2(a) depicts
AAdv[lj ] when wj chooses different ξj with a fixed rj =
10km. We observe that the platform’s posterior knowledge
gain increases as the growth of worker’s privacy leakage
budget. Specifically, AAdv[lj ] = 1.018 when ξj = 0.03,
while it reaches 1.043 when ξj = 0.07. This trend meets the
theoretical result derived in Theorem 5. With a smaller ξj ,
the obfuscated location zj tends to be generated with a more
evenly distribution. Thus, the knowledge of zj provides the
platform limited advantage to correctly locate this worker.

1050



MCS market size M = 40
N = 20

M = 50
N = 30

M = 70
N = 50

M = 100
N = 80

M = 140
N = 80

M = 170
N = 90

M = 180
N = 90

M = 190
N = 100

Exhaustive search 296.31 ms 592.05 ms 751.05 ms 1226.35 ms 2141.75 ms 2878.43 ms 3384.36 ms 4967.41 ms
Heuristic algorithm 128.69 ms 134.92 ms 156.60 ms 210.37 ms 227.33 ms 256.73 ms 274.61 ms 309.06 ms

TABLE I
COMPARISON BETWEEN EXHAUSTIVE SEARCH AND THE HEURISTIC ALGORITHM IN TERMS OF COMPUTATION TIME.
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Fig. 2. Platform’s posterior knowledge gain with respect to worker’s privacy
leakage budget and obfuscation range.
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Fig. 3. Platform’s MCS service accuracy with respect to β and workers’
privacy leakage budgets.

Impact of Obfuscation Range rj . Fig. 2(b) further depicts
the impact of obfuscation range rj to AAdv[lj ] under a fixed
ϵj = 0.1. We notice that AAdv[lj ] decreases as the increase
of worker’s obfuscation range rj . This is because ξj = ϵj/rj
becomes smaller when a larger obfuscation range is chosen,
which complies with Theorem 5. Therefore, a worker’s loca-
tion privacy can be better preserved when it chooses a larger
obfuscation range.

C. MCS Service Accuracy

We evaluate the service accuracy by examining α with
respect to ξ and β, repsectively. Specifically, ξ is defined as
minj:wj∈W∗ ξj , i.e., the lowest privacy leakage budget among
all winning workers.

Impact of Minimum Privacy Leakage Budget ξ. Fig.
3(a) says that a better service accuracy, i.e., a lower α, is
achieved when workers select larger privacy leakage budget.
Specifically, α = 90.25 when ξ = 0.01, while it drops to 81.51
when ξ = 0.09. Thus, there is a tradeoff relation between the
service accuracy and overall privacy protection level. When
workers impose strict privacy requirements, it is infeasible for
the platform to provide accurate services.

Impact of β. Fig. 3(b) depicts the relation between α and
β. We observe that α increases as β grows. For instance, α =
91.42 when β = 0.3 and α = 113.64 when β = 0.9. Recall
that β is the confidence level for the statement loss ≤ α.
Then, when we want to estimate service accuracy with higher
confidence, a more conservative and thus a relatively large α
will be given.
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(a) Impact to AAdv(lj).
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Fig. 4. Impact of the platform’s budget to MCS market performances.

D. Budget Feasibility

Impact to AAdv[lj ]. Fig. 4(a) examines the platform’s
advantage in inferring two arbitrary workers’ exact locations.
These workers adopt privacy leakage budgets 0.01 and 0.05,
respectively. We find that the platform’s advantage is indepen-
dent from the budget. This is because each worker determines
how much location privacy it leaks to the platform by selecting
different privacy leakage budget ξj . This value is irrelevant to
the platform’s budget.

Impact to service accuracy α. Fig. 4(b) shows the impact
of B to α. We observe that α decreases as B grows. Specifi-
cally, α = 100.26 when B = 20, and it drops to 78.43 when
B = 100. This is because a large amount of budget allows the
platform to recruit workers who provide more accurate sensing
reports. As a result, the service accuracy is enhanced.

VII. CONCLUSION

We construct a location privacy trading market for MCS
under an auction framework, where the platform provides
incentives to motivate workers to complete sensing tasks.
Taking into account of budget constraint, service accuracy, and
privacy protection, we formulate an optimization problem. To
efficiently solve it, a heuristic algorithm is proposed. Formal
proofs show that our mechanism achieves ξ-privacy, (α,β)-
accuracy, and budget feasibility, which are further validated
through extensive simulations based on New York City’s 311
platform dataset.
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APPENDIX A
PROOF OF THEOREM 1

As each worker determines its obfuscation mechanism inde-
pendently, their drift distances are independent with each other
as well. From the definition of geo-information loss, the mean
and variance of loss is calculated by E[loss] =

∑
j:wj∈W∗ µj

and D[loss] =
∑

j:wj∈W∗ σ2
j . Following the Chebyshev’s

inequality, for any nonnegative value a, we have Pr[loss −∑
j:wj∈W∗ µj ≥ a] ≤ Pr[|loss −

∑
j:wj∈W∗ µj | ≥ a] ≤

1
a2

∑
j:wj∈W∗ σ2

j . Therefore, Pr[loss ≤ a+
∑

j:wj∈W∗ µj ] ≥
1− 1

a2

∑
j:wj∈W∗ σ2

j . Comparing with (6), for a given β, α is

calculated by α =

√∑
j:wj∈W∗ σ2

j

(1−β) +
∑

j:wj∈W∗ µj .

APPENDIX B
PROOF OF THEOREM 4

First of all, we have

OPT ≥ min
j∈[1,M ]

{
σj/

√
1− β + µj

}
= min

j∈[1,M ]
{Fj} . (13)

Besides, via the proposed heuristic algorithm,
we obtain a set of winning workers W∗. Then

α is expressed as α =

√∑
j:wj∈W∗ σ2

j

(1−β) +
∑

j:wj∈W∗ µj≤
∑

wj∈W∗ Fj=
∑

wj∈W∗
(G(W∪wj)−G(W))

gj|Wj−1
≤

∑
wj∈W∗

|Tj |
gj|Wj−1

≤
∑

wj∈W∗
B|Tj |

2bjS(W∗) =

B
2S(W∗)

∑
wj∈W∗

|Tj |
cj

. Note that

√∑
j:wj∈W∗ σ2

j

(1−β) ≤
∑

j:wj∈W∗ σj/
√
1− β, as

√
a2 + b2 ≤ a+ b (a, b ≥ 0).

Meanwhile, following the Algorithm 1 and (11), we have
g1|W0
b1

≥ · · · ≥
gj|Wj−1

bj
≥ · · · ≥

g|W∗||W|W∗|−1

b|W∗|
≥

2S(W∗)
B . Combining the analysis above, we have α

OPT ≤
B·

∑
wj∈W∗

|Tj |
cj

2S(W∗)minj∈[1,M]{Fj} which ends the proof.

APPENDIX C
PROOF OF LEMMA 1

We first prove the correctness for the second inequality
where Pr[zj |lj ] ≤ exp(ξj) Pr[zj |l′j ].

For wj , assume that both lj and l′j are mapped to
the same obfuscation location zj via its location obfus-

cation mechanism. Then Pr[zj |lj ]
Pr[zj |l′j ]

=
exp[

ξj
rj

(rj−d(lj ,zj))]

exp[
ξj
rj

(rj−d(l′j ,zj))]
×

∑
z′j∈Z′

j
exp[

ξj
rj

(rj−d(l′j ,z
′
j))]

∑
z̃j∈Zj

exp[
ξj
rj

(rj−d(lj ,z̃j))]
=exp[ ξjrj (d(l

′
j , zj) − d(lj , zj))] ≤

exp( ξjrj rj) = exp(ξj) where Zj and Z ′
j stand for the ob-

fuscated location sets wj generates when it is at lj and l′j ,
respectively. While Zj and Z ′

j are different under the same
coordinate system, they are identical under their own system
of polar coordinates (with origins at lj and l′j , respectively)
according to the obfuscated location set generation procedure;
that is, the relative positions between elements in Zj and
Z ′

j are the same. Thus,
∑

z′
j∈Z′

j
exp[ ξjrj (rj − d(l′j , z

′
j))] =

∑
z̃j∈Zj

exp[ ξjrj (rj −d(lj , z̃j))] and the second equality holds.
In addition, since d(l′j , zj) ≤ rj , the inequality also holds.

Following the similar idea, the correctness for the first
inequality in the statement can be validated as well.

APPENDIX D
PROOF OF THEOREM 5

The platform’s advantage or posterior
knowledge gain is calculated as AAdv[lj ] =
Pr[lj |zj ]
Pr[lj ]

= Pr[zj |lj ]
Pr[zj ]

= Pr[zj |lj ]∑
l′j∈Lj

Pr[l′j ] Pr[zj |l′j ]
≤

∑
l′j∈Lj

Pr[zj |lj ]
Pr[l′j ] Pr[zj |l′j ]

≤
∑

l′j∈Lj

exp(ξj) Pr[zj |l′j ]
Pr[l′j ] Pr[zj |l′j ]

=
exp(ξj)∑

l′j∈Lj
Pr[l′j ]

= exp(ξj). The first inequality above is

due to the fact that 1
a+b ≤ 1

a + 1
b (a, b > 0). The second
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inequality is derived from Lemma 1. According to Definition
1, each worker wj achieves ξj-privacy in MCS market via
our mechanism.

APPENDIX E
PROOF OF LEMMA 2

Denote by wj the winning worker selected in the j-th
iteration of Algorithm 1,W∗

as the winning worker set derived
by excluding wj . Let r = argmaxl:wl∈W∗ bvj,l, then pj = bvj,r.
Since wj is not selected in the first j − 1 iterations from W∗,
then bj > bvj,l where l ∈ [0, j − 1]. It implies r ≥ j and thus
Wj−1 ⊆ Wr−1. Also, we have Wr−1 ∪ wj ⊆ Wr−1 ∪W∗.

When determining payment for wj , since wj can substitute
wr to win in the r-th iteration by bidding bvj,r (and thus
pj), then pj ≤ B

2 ×
gj|Wr−1

S(Wr−1∪wj)
. Together with the fact that

Wj−1 ⊆ Wr−1, we derive

gj|Wj−1

pj
≥

gj|Wr−1

pj
≥

2S(Wr−1 ∪ wj)

B
. (14)

In the following, we derive the conclusion that pj ≤
B

gj|Wj−1

S(W∗) . This discussion should be carried out under all
possible cases, Wr−1 ∪wj = Wr−1 ∪W∗ and Wr−1 ∪wj ⊂
Wr−1 ∪W∗.

For the first case, where Wr−1 ∪ wj = Wr−1 ∪W∗, from
(14) we have

gj|Wj−1

pj
≥ 2S(Wr−1∪wj)

B = 2S(Wr−1∪W∗)
B ≥

S(W∗)
B and thus pj ≤ B

gj|Wj−1

S(W∗) .
For the second case, where Wr−1 ∪wj ⊂ Wr−1 ∪W∗, we

plan to derive the conclusion via the contradiction method.
Specifically, we assume pj > B

gj|Wj−1

S(W∗) . Besides, denote by
W1 = Wr−1 ∪ wj and W2 = Wr−1 ∪ W∗ for expression
simplicity.

Let r′ = argmaxt:wt∈W2\W1
{ gt|W1

bt
}, then

S(W2)− S(W1)∑
wt∈W2\W1

bt
≤
gr′|W1

br′
≤
gr|W1

br
≤

gr|Wr−1

br

≤
gj|Wr−1

pj
≤

gj|Wj−1

pj
<

S(W∗)

B
. (15)

The first inequality is also derived from a contradic-
tion point of view. Assuming S(W2)−S(W1)∑

wt∈W2\W1
bt

>
gr′|W1
br′

, then
S(W2)−S(W1)∑

wt∈W2\W1
bt

>
gt|W1
bt

for wt ∈ W2 \ W1. Adding up these
inequalities and applying some simple transformations, then
S(W2)−S(W1)∑

wt∈W2\W1
bt

>
∑

wt∈W2\W1
gt|W1∑

wt∈W2\W1
bt

and thus S(W2)−S(W1) >∑
wt∈W2\W1

gt|W1
, which contradicts with the fact S(W2) −

S(W1) ≤
∑

wt∈W2\W1
gt|W1

implied by (10). Therefore, the
first inequality of (15) must hold. Its last inequality directly
comes from the assumption pj > B

gj|Wj−1

S(W∗) .
From the winner selection rule and (11), we have

g1|W0
b1

≥ · · · ≥
gj|Wj−1

bj
≥ · · · ≥

g|W∗||W|W∗|−1

b|W∗|
≥

2S(W∗)
B . Thus,

∑
j:wj∈W∗ bj ≤

∑
j:wj∈W∗

B
2 ×

gj|Wj−1

S(W∗) =
B
2 , and thus

∑
t:wt∈W2\W1

bt ≤ B
2 . Together with (15),

2(S(W∗)−S(W1))
B ≤ S(W2)−S(W1)∑

wt∈W2\W1
bt
≤S(W∗)

B , from which we
have S(W∗) ≤ 2S(W1). Integrating it into (14), we have

pj ≤ B
gj|Wj−1

2S(Wr−1∪wj))
= B

gj|Wj−1

2S(W1)
≤ B

gj|Wj−1

S(W∗) which

contradicts with the assumption that pj > B
gj|Wj−1

S(W∗) .
According to the discussion above, we conclude that pj ≤

B
gj|Wj−1

S(W∗) .

APPENDIX F
PROOF OF THEOREM 7

Suppose worker wj bids bj other than its truthful cost cj .
We first consider the scenario where bj > cj .

• Case 1: wj wins with both cj and bj . According to the
payment policy, a winning worker’s payment is inde-
pendent to its bid. Thus, in either case it receives the
same payment pj . Therefore, uj(cj , b−j) = pj − cj =
uj(bj , b−j).

• Case 2: wj wins with cj but loses with bj . Therefore,
uj(cj , b−j) > uj(bj , b−j) = 0.

• Case 3: wj loses with cj but wins with bj . It implies
gj|Ws−1

bj
>

gj|Ws−1

cj
and thus cj > bj , which contradicts

with the statement bj > cj . Therefore, this case will not
happen.

• Case 4: wj loses with both cj and bj . Then uj(cj , b−j)
= uj(bj , b−j) = 0.

From the discussion above, uj(cj , b−j) ≥ uj(bj , b−j) when
bj > cj . The proof is similar for the scenario where bj < cj ,
which is omitted due to space limit. According to Definition
4, we derive the conclusion.

APPENDIX G
PROOF OF THEOREM 8

For any winner wj ∈ W∗, if we can show that cj < bvj,l for
a certain wl ∈ W∗

, then cj < bvj,l ≤ pj and thus the theorem
exists.

For this purpose, we identify this worker wl(j) as the one
selected in the l-th iteration for the payment determination
(and thus the l-th winner of W∗

) and also selected in the j-th
iteration for winner determination (and thus the j-th winner
of W∗). Then W l(j)−1 = Wj−1, and accordingly,

bj ≤
B

2
·
gj|Wj−1

S(Wj)
=

B

2
·

gj|Wl(j)−1

S(Wl(j)−1) + gj|Wl(j)−1

(16)

≤
B

2
·

gj|Wl(j)−1

S(Wl(j)−1) + gl(j)|Wl(j)−1

=
B

2
·
gj|Wl(j)−1

S(Wl(j))
.

From the assumption of wl(j), it can be inferred that it is
selected in a later order than wj in the winner selection pro-
cedure, and thus l > j. Therefore, gj|Wl(j)−1

≥ gl(j)|Wl(j)−1
,

which explains the second inequality above. Due to the similar
reason, we have

gl(j)|Wj−1

bl(j)
≤

gj|Wj−1

bj
, and thus

bj ≤
bl(j) × gj|Wj−1

gl(j)|Wj−1

=
bl(j) × gj|Wl(j)−1

gl(j)|Wl(j)−1

. (17)

Meanwhile, according to the payment rule of Algorithm

1, bvj,l(j) = min

{
bl(j)×gj|Wl(j)−1

gl(j)|Wl(j)−1

, B
2 ×

gj|Wl(j)−1

S(Wl(j))

}
. Together

with (16) and (17), we have bj ≤ bvj,l(j). Since Theo-
rem 7 states that bj = cj , then cj = bj ≤ bvj,l(j) ≤
argmaxk:wk∈W∗ bvj,k = pj . According to Definition 5, we
derive the conclusion.
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